Goal
The goal of this tutorial is to build a search app using Django and Haystack
You will learn how to use Django commands to initialize a database with emoji
data. You will also learn how to add search to a Django project using Haystack.
Upon completion, you will have a built an app that allows you to search for
over a thousand emojis. This app also gives you the ability to copy any emoji to
your clipboard with one click.
Before you start
Make sure you meet the following prerequisites before starting the tutorial
steps:
This project depends on Pipenv. Pipenv allows you to download and install
versions of packages in a virtual environment.
Another prerequisite is Elasticsearch. An Elasticsearch instance needs to run
separate from the app.
Installing packages
The app depends on the following packages:
Open up a terminal prompt and create a directory called
emoji-in-the-haystack:
mkdir emoji-in-the-haystack
cd emoji-in-the-haystack
Install the packages:
pipenv install django==3.0.7
pipenv install git+https://github.com/django-haystack/django-haystack.git#egg=django-haystack
pipenv install elasticsearch==5.5.3
pipenv install requests==2.24.0
You’ll see a bunch of colorful output and a couple of 🐍 emojis. In
this directory, you should now see the files Pipfile and Pipfile.lock.
You’re ready to create a Django project.
Setting up a Django project and app
After installing the packages, the next step is to create a Django project.
Activate your virtual environment:
You should now see your terminal prompt prefixed with
(emoji-in-the-haystack)
.
Create a Django project called emoji_haystack:
django-admin startproject emoji_haystack .
The directory should now look like this:
├── Pipfile
├── Pipfile.lock
├── manage.py
└── emoji_haystack
├── __init__.py
├── asgi.py
├── settings.py
├── urls.py
└── wsgi.py
Create a Django app called search:
python manage.py startapp search
The directory should now look like this:
├── Pipfile
├── Pipfile.lock
├── manage.py
├── emoji_haystack
│ ├── __init__.py
│ ├── asgi.py
│ ├── settings.py
│ ├── urls.py
│ └── wsgi.py
└── search
├── __init__.py
├── admin.py
├── apps.py
├── migrations
│ └── __init__.py
├── models.py
├── tests.py
└── views.py
You need to enable the newly created app.
Update the INSTALLED_APPS
setting in settings.py:
33
34
35
36
37
38
39
40
41
42 |
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'search.apps.SearchConfig',
]
|
To test that everything is working, run the app:
python manage.py runserver
Navigate to http://127.0.0.1:8000/ and confirm that
the app is working.
Note: You can run python manage.py migrate
to get rid of the Django
warnings when running the app.
Emoji data
The next step is to create a Django model class to represent the emoji data.
Update models.py:
|
from django.db import models
class Emoji(models.Model):
name = models.CharField(
max_length=50,
)
code = models.CharField(
max_length=50,
)
|
You need to store the name
for each emoji. For example, “grimacing
face” is the name given to 😬. You also need to store the code
for an
emoji. These code points are unique for every emoji. Django handles rendering
emojis in the browser using these codes.
After creating the model, run a migration to apply these changes to the
database:
python manage.py makemigrations --name add_emoji_model search
python manage.py migrate
The next step is to create a new directory for the Django command. Django
commands are special scripts registered in Django projects.
The command in this app retrieves emoji data and saves it to the database using
the Emoji
model class. This commands must live in the new directory.
Create the new directory:
cd search
mkdir management
cd management
mkdir commands
cd commands
Inside this commands directory, create the initemojidata command:
The directory should now look like this:
├── Pipfile
├── Pipfile.lock
├── db.sqlite3
├── emoji_haystack
│ ├── __init__.py
│ ├── asgi.py
│ ├── settings.py
│ ├── urls.py
│ └── wsgi.py
├── manage.py
└── search
├── __init__.py
├── admin.py
├── apps.py
├── management
│ └── commands
│ └── initemojidata.py
├── migrations
│ ├── 0001_add_emoji_model.py
│ └── __init__.py
├── models.py
├── tests.py
└── views.py
Here is the code to retrieve and save emoji data:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75 |
import json
import requests
from django.core.management.base import BaseCommand, CommandError
from search.models import Emoji
EMOJI_JSON_URL = 'https://raw.githubusercontent.com/iamcal/emoji-data/master/emoji.json'
class Command(BaseCommand):
help = 'Initialize database with emoji data'
def add_arguments(self, parser):
parser.add_argument(
'--dry-run',
action='store_true',
default=False)
def execute(self, *args, **options):
self.count = 0
try:
super().execute(*args, **options)
except KeyboardInterrupt:
self.stdout.write('')
self.stdout.write(self.style.SUCCESS(
'Emojis created: {}'.format(self.count)))
def handle(self, *args, **options):
self.dry_run = options['dry_run']
emojis = self.get_emojis()
for emoji in emojis:
if not emoji.get('name'):
continue
code = self.handle_code(emoji)
name = emoji['name'].lower()
self.stdout.write(
'{} - {}'.format(name, code))
if not self.dry_run:
emoji = Emoji(
name=name,
code=code)
emoji.save()
self.count += 1
def get_emojis(self):
response = requests.get(
url=EMOJI_JSON_URL)
emojis = json.loads(response.content)
return emojis
def handle_code(self, emoji):
"""
U+1F1EC, U+1F1FE - > 🇬🇾
"""
unified = emoji.get('non_qualified') or emoji.get('unified')
unified = unified.split('-')
codes = []
for code in unified:
_code = '&#x' + code
codes.append(_code)
return ''.join(codes)
|
The syntax for Django commands may take some time getting used to. Django
commands require a Command
class definition that subclasses
BaseCommand
. This class requires a handle()
method. Your logic
goes in here.
I use the execute()
method to
define some variables to count and output the number of items updated when a
command finishes running.
On line 35, the get_emojis()
method defined on the class gets called
using the self
property. The method makes a request to
the URL defined on line 9. This endpoint is a JSON file hosted
on GitHub.
It may not include the newest emojis but it’s the best option
for this app. The Emojipedia API is
no longer available for public use. Typically you need to handle errors
when making API requests but it’s fine to leave out here.
The command retrieves the emoji data and begins to process each data item on
line 37. It ignores data items with no name
field. On line 41, the
command calls the handle_code()
. This method transforms the emoji
unicode data into a string that gets stored in the database. The transformation
of this unicode data makes it possible to render emojis in HTML. More on this
later.
You can run this command with an optional dry_run
argument. Providing
this argument means you can test your Django command logic without saving
anything to the database. If this argument is not passed in when running the
command, the command creates an Emoji object with name
and code
set and saves it to the database.
Django commands are ran from the root of the project.
Run the Django command (--dry-run
option):
python manage.py initemojidata --dry-run
Run the Django command (no regrets option):
python manage.py initemojidata
The emoji data is now stored in the database.
Haystack setup
Haystack makes it easy to add custom search to Django apps. You write your
search code once and can go back and forth between search backends as you
please. You can choose to use different search backends like Elasticsearch,
Solr, and others. This tutorial uses Elasticsearch.
Integrating Haystack consists of creating a search index model and updating a
couple of Django settings.
The search index model corresponds to the database model defined
earlier. Haystack requires this file to know what data to place in the search
index.
Inside the search app directory, create a search_indexes.py file:
cd search
touch search_indexes.py
Here’s what the code for that looks like:
|
import datetime
from haystack import indexes
from search.models import Emoji
class EmojiIndex(indexes.SearchIndex, indexes.Indexable):
text = indexes.CharField(document=True, use_template=True)
def get_model(self):
return Emoji
|
When you make search a query, Haystack searches the text
field. This
field corresponds to the name
field defined in the Emoji
model.
Next, include the urls provided by Haystack in urls.py. Django implicitly
calls a custom Haystack view that handles search requests and returning
responses. This response uses an HTML template that you need to create and
configure. More on this later.
|
from django.contrib import admin
from django.urls import include, path
urlpatterns = [
path('admin/', admin.site.urls),
path('search/', include('haystack.urls')),
]
|
You need to enable the Haystack app.
Update the INSTALLED_APPS
setting in settings.py:
33
34
35
36
37
38
39
40
41
42
43
44 |
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'search.apps.SearchConfig',
'haystack',
]
|
Add a connection to Elasticsearch in settings.py:
127
128
129
130
131
132
133
134
135
136 |
# Haystack configuration
# https://haystacksearch.org
HAYSTACK_CONNECTIONS = {
'default': {
'ENGINE': 'haystack.backends.elasticsearch5_backend.Elasticsearch5SearchEngine',
'URL': 'http://127.0.0.1:9200/',
'INDEX_NAME': 'haystack',
},
}
|
Haystack setup continued
The following steps are cumbersome but they are essential in getting Haystack to
work.
In settings.py, update the TEMPLATES
setting:
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72 |
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [os.path.join(BASE_DIR, 'templates')],
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
],
},
},
]
|
From the root of the project, create a templates directory:
mkdir templates
cd templates
Creating a single project-level templates directory is a recognized Django
pattern.
In the templates directory, create a search directory and a file called
search.html:
mkdir search
cd search
touch search.html
In the search directory, create an indexes directory:
In the indexes directory, create a search directory and a file called
emoji_text.txt:
mkdir search
cd search
touch emoji_text.txt
Here’s what emoji_text.txt should look like:
Haystack uses this data template to build the document used by the search
engine.
The final directory structure should look like this:
├── Pipfile
├── Pipfile.lock
├── db.sqlite3
├── emoji_haystack
│ ├── __init__.py
│ ├── asgi.py
│ ├── settings.py
│ ├── urls.py
│ └── wsgi.py
├── manage.py
├── search
│ ├── __init__.py
│ ├── admin.py
│ ├── apps.py
│ ├── management
│ │ └── commands
│ │ └── initemojidata.py
│ ├── migrations
│ │ ├── 0001_add_emoji_model.py
│ │ └── __init__.py
│ ├── models.py
│ ├── search_indexes.py
│ ├── tests.py
│ └── views.py
└── templates
└── search
├── indexes
│ └── search
│ └── emoji_text.txt
└── search.html
Search template
Now it’s time to update search.html. This template contains a text field
to type in a search query, a button that fires a search request and some
template variables. Use the template example found
here.
Note: Remove {% extends 'base.html' %}
at the top of the file.
The main differences in the template for this tutorial are the following two
lines:
|
{% for result in page.object_list %}
<p>{{ result.object.code|safe }}</p>
<p>{{ result.object.name }}</p>
{% empty %}
|
object_list
is a list of search results. For each search result, display
the emoji and its name. result.object
provides direct access to the
Emoji
model and its database fields.
Displaying the emoji requires using the safe
Django filter. It does not
require further HTML escaping.
Running Elasticsearch
Navigate to the location of your Elasticsearch installation and start
an instance. For example, say you downloaded Elasticsearch in your
Downloads folder:
cd Downloads
cd elasticsearch-5.5.3
cd bin
elasticsearch
Haystack ships with a set of Django commands that handle indexing the emoji data
stored in the database. This tutorial uses the rebuild_index command. This
command rebuilds the search index by first clearing it and then updating it.
Have a look at the
source code
for more info.
From the root of the project, run the command:
python manage.py rebuild_index
Run the app:
python manage.py runserver
Navigate to http://127.0.0.1:8000/search
and confirm that the app is working.
If you query for “cat,” you get back a list of results. If you query for
“flag,” you get back results for flag emojis.
If you scroll to the bottom, you’ll see a Previous button and Next
button. Haystack returns at most 20 results per page. This out of the box
feature is awesome. The layout needs a little bit of work though.
Bootstrap + clipboard.js
You can use Bootstrap to clean up the design.
Another feature is to copy an emoji to your clipboard by
clicking on it - clipboard.js
can help here.
Load Bootstrap and clipboard.js from CDN in search.html:
|
<script src="https://cdn.jsdelivr.net/npm/clipboard@2/dist/clipboard.min.js"></script>
<!-- Bootstrap CSS -->
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css"
integrity="sha384-MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO"
crossorigin="anonymous">
{% block content %}
|
A couple of Bootstrap <div>
elements and some styling updates go
a long way in improving the look of the app.
Including the data-clipboard-text
attribute on the emoji button lets
you copy emojis to your clipboard:
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 |
{% if query %}
<h3>Results</h3>
<div class="container">
<div class="row">
{% for result in page.object_list %}
<div class="col-sm">
<button type="button" class="btn" data-clipboard-text="{{ result.object.code|safe }}" style="font-size:90px;">{{ result.object.code|safe }}</button>
<p style="text-align: center">{{ result.object.name }}</p>
</div>
{% empty %}
<p>No results found.</p>
{% endfor %}
</div>
</div>
|
The last thing to do is to initialize clipboard.js in search.html:
50
51
52
53
54
55
56
57
58
59
60
61
62 |
{% endblock %}
<script>
var clipboard = new ClipboardJS('.btn');
clipboard.on('success', function(e) {
console.log(e);
});
clipboard.on('error', function(e) {
console.log(e);
});
</script>
|
Run the app with these new changes:
python manage.py runserver
Navigate to http://127.0.0.1:8000/search
and confirm the changes. This looks much better. The emojis are more prominent
and the click-to-copy feature is the 🍒 on top.
What you’ve learned
Rejoice and show your friends how to find the emoji in the haystack. If you’re
up for the challenge, see if you can make the following app improvements: