GoalΒΆ
The goal of this tutorial is to build a search app using Django and Haystack You will learn how to use Django commands to initialize a database with emoji data. You will also learn how to add search to a Django project using Haystack.
Upon completion, you will have a built an app that allows you to search for over a thousand emojis. This app also gives you the ability to copy any emoji to your clipboard with one click.
Before you startΒΆ
Make sure you meet the following prerequisites before starting the tutorial steps:
Pipenv - version 2018.11.26 (run
pipenv --version
to confirm)Elasticsearch - version 5.5.3
This project depends on Pipenv. Pipenv allows you to download and install versions of packages in a virtual environment.
Another prerequisite is Elasticsearch. An Elasticsearch instance needs to run separate from the app.
Installing packagesΒΆ
The app depends on the following packages:
Django - to build the website
Haystack - to add search capability
Elasticsearch client - low-level client required by Haystack (different than the Elasticsearch instance)
Requests - to retrieve emoji data
Open up a terminal prompt and create a directory called emoji-in-the-haystack:
mkdir emoji-in-the-haystack
cd emoji-in-the-haystack
Install the packages:
pipenv install django==3.0.7
pipenv install git+https://github.com/django-haystack/django-haystack.git#egg=django-haystack
pipenv install elasticsearch==5.5.3
pipenv install requests==2.24.0
Youβll see a bunch of colorful output and a couple of π emojis. In this directory, you should now see the files Pipfile and Pipfile.lock.
Youβre ready to create a Django project.
Setting up a Django project and appΒΆ
After installing the packages, the next step is to create a Django project.
Activate your virtual environment:
pipenv shell
You should now see your terminal prompt prefixed with
(emoji-in-the-haystack)
.
Create a Django project called emoji_haystack:
django-admin startproject emoji_haystack .
The directory should now look like this:
βββ Pipfile
βββ Pipfile.lock
βββ manage.py
βββ emoji_haystack
βββ __init__.py
βββ asgi.py
βββ settings.py
βββ urls.py
βββ wsgi.py
Create a Django app called search:
python manage.py startapp search
The directory should now look like this:
βββ Pipfile
βββ Pipfile.lock
βββ manage.py
βββ emoji_haystack
βΒ Β βββ __init__.py
βΒ Β βββ asgi.py
βΒ Β βββ settings.py
βΒ Β βββ urls.py
βΒ Β βββ wsgi.py
βββ search
βββ __init__.py
βββ admin.py
βββ apps.py
βββ migrations
βΒ Β βββ __init__.py
βββ models.py
βββ tests.py
βββ views.py
You need to enable the newly created app.
Update the INSTALLED_APPS
setting in settings.py:
33 34 35 36 37 38 39 40 41 42 |
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'search.apps.SearchConfig',
]
|
To test that everything is working, run the app:
python manage.py runserver
Navigate to http://127.0.0.1:8000/ and confirm that the app is working.
Note: You can run python manage.py migrate
to get rid of the Django
warnings when running the app.
Emoji dataΒΆ
The next step is to create a Django model class to represent the emoji data.
Update models.py:
1 2 3 4 5 6 7 8 9 10 |
from django.db import models
class Emoji(models.Model):
name = models.CharField(
max_length=50,
)
code = models.CharField(
max_length=50,
)
|
You need to store the name
for each emoji. For example, βgrimacing
faceβ is the name given to π¬. You also need to store the code
for an
emoji. These code points are unique for every emoji. Django handles rendering
emojis in the browser using these codes.
After creating the model, run a migration to apply these changes to the database:
python manage.py makemigrations --name add_emoji_model search
python manage.py migrate
The next step is to create a new directory for the Django command. Django commands are special scripts registered in Django projects.
The command in this app retrieves emoji data and saves it to the database using
the Emoji
model class. This commands must live in the new directory.
Create the new directory:
cd search
mkdir management
cd management
mkdir commands
cd commands
Inside this commands directory, create the initemojidata command:
touch initemojidata.py
The directory should now look like this:
βββ Pipfile
βββ Pipfile.lock
βββ db.sqlite3
βββ emoji_haystack
βΒ Β βββ __init__.py
βΒ Β βββ asgi.py
βΒ Β βββ settings.py
βΒ Β βββ urls.py
βΒ Β βββ wsgi.py
βββ manage.py
βββ search
βββ __init__.py
βββ admin.py
βββ apps.py
βββ management
βΒ Β βββ commands
βΒ Β βββ initemojidata.py
βββ migrations
βΒ Β βββ 0001_add_emoji_model.py
βΒ Β βββ __init__.py
βββ models.py
βββ tests.py
βββ views.py
Here is the code to retrieve and save emoji data:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import json
import requests
from django.core.management.base import BaseCommand, CommandError
from search.models import Emoji
EMOJI_JSON_URL = 'https://raw.githubusercontent.com/iamcal/emoji-data/master/emoji.json'
class Command(BaseCommand):
help = 'Initialize database with emoji data'
def add_arguments(self, parser):
parser.add_argument(
'--dry-run',
action='store_true',
default=False)
def execute(self, *args, **options):
self.count = 0
try:
super().execute(*args, **options)
except KeyboardInterrupt:
self.stdout.write('')
self.stdout.write(self.style.SUCCESS(
'Emojis created: {}'.format(self.count)))
def handle(self, *args, **options):
self.dry_run = options['dry_run']
emojis = self.get_emojis()
for emoji in emojis:
if not emoji.get('name'):
continue
code = self.handle_code(emoji)
name = emoji['name'].lower()
self.stdout.write(
'{} - {}'.format(name, code))
if not self.dry_run:
emoji = Emoji(
name=name,
code=code)
emoji.save()
self.count += 1
def get_emojis(self):
response = requests.get(
url=EMOJI_JSON_URL)
emojis = json.loads(response.content)
return emojis
def handle_code(self, emoji):
"""
U+1F1EC, U+1F1FE - > 🇬🇾
"""
unified = emoji.get('non_qualified') or emoji.get('unified')
unified = unified.split('-')
codes = []
for code in unified:
_code = '&#x' + code
codes.append(_code)
return ''.join(codes)
|
The syntax for Django commands may take some time getting used to. Django
commands require a Command
class definition that subclasses
BaseCommand
. This class requires a handle()
method. Your logic
goes in here.
I use the execute()
method to
define some variables to count and output the number of items updated when a
command finishes running.
On line 35, the get_emojis()
method defined on the class gets called
using the self
property. The method makes a request to
the URL defined on line 9. This endpoint is a JSON file hosted
on GitHub.
It may not include the newest emojis but itβs the best option for this app. The Emojipedia API is no longer available for public use. Typically you need to handle errors when making API requests but itβs fine to leave out here.
The command retrieves the emoji data and begins to process each data item on
line 37. It ignores data items with no name
field. On line 41, the
command calls the handle_code()
. This method transforms the emoji
unicode data into a string that gets stored in the database. The transformation
of this unicode data makes it possible to render emojis in HTML. More on this
later.
You can run this command with an optional dry_run
argument. Providing
this argument means you can test your Django command logic without saving
anything to the database. If this argument is not passed in when running the
command, the command creates an Emoji object with name
and code
set and saves it to the database.
Django commands are ran from the root of the project.
Run the Django command (--dry-run
option):
python manage.py initemojidata --dry-run
Run the Django command (no regrets option):
python manage.py initemojidata
The emoji data is now stored in the database.
Haystack setupΒΆ
Haystack makes it easy to add custom search to Django apps. You write your search code once and can go back and forth between search backends as you please. You can choose to use different search backends like Elasticsearch, Solr, and others. This tutorial uses Elasticsearch.
Integrating Haystack consists of creating a search index model and updating a couple of Django settings.
The search index model corresponds to the database model defined earlier. Haystack requires this file to know what data to place in the search index.
Inside the search app directory, create a search_indexes.py file:
cd search
touch search_indexes.py
Hereβs what the code for that looks like:
1 2 3 4 5 6 7 8 9 10 11 |
import datetime
from haystack import indexes
from search.models import Emoji
class EmojiIndex(indexes.SearchIndex, indexes.Indexable):
text = indexes.CharField(document=True, use_template=True)
def get_model(self):
return Emoji
|
When you make search a query, Haystack searches the text
field. This
field corresponds to the name
field defined in the Emoji
model.
Next, include the urls provided by Haystack in urls.py. Django implicitly calls a custom Haystack view that handles search requests and returning responses. This response uses an HTML template that you need to create and configure. More on this later.
16 17 18 19 20 21 22 |
from django.contrib import admin
from django.urls import include, path
urlpatterns = [
path('admin/', admin.site.urls),
path('search/', include('haystack.urls')),
]
|
You need to enable the Haystack app.
Update the INSTALLED_APPS
setting in settings.py:
33 34 35 36 37 38 39 40 41 42 43 44 |
INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'search.apps.SearchConfig',
'haystack',
]
|
Add a connection to Elasticsearch in settings.py:
127 128 129 130 131 132 133 134 135 136 |
# Haystack configuration
# https://haystacksearch.org
HAYSTACK_CONNECTIONS = {
'default': {
'ENGINE': 'haystack.backends.elasticsearch5_backend.Elasticsearch5SearchEngine',
'URL': 'http://127.0.0.1:9200/',
'INDEX_NAME': 'haystack',
},
}
|
Haystack setup continuedΒΆ
The following steps are cumbersome but they are essential in getting Haystack to work.
In settings.py, update the TEMPLATES
setting:
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
TEMPLATES = [
{
'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [os.path.join(BASE_DIR, 'templates')],
'APP_DIRS': True,
'OPTIONS': {
'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',
'django.contrib.messages.context_processors.messages',
],
},
},
]
|
From the root of the project, create a templates directory:
mkdir templates
cd templates
Creating a single project-level templates directory is a recognized Django pattern.
In the templates directory, create a search directory and a file called search.html:
mkdir search
cd search
touch search.html
In the search directory, create an indexes directory:
mkdir indexes
cd indexes
In the indexes directory, create a search directory and a file called emoji_text.txt:
mkdir search
cd search
touch emoji_text.txt
Hereβs what emoji_text.txt should look like:
{{ object.name }}
Haystack uses this data template to build the document used by the search engine.
The final directory structure should look like this:
βββ Pipfile
βββ Pipfile.lock
βββ db.sqlite3
βββ emoji_haystack
βΒ Β βββ __init__.py
βΒ Β βββ asgi.py
βΒ Β βββ settings.py
βΒ Β βββ urls.py
βΒ Β βββ wsgi.py
βββ manage.py
βββ search
βΒ Β βββ __init__.py
βΒ Β βββ admin.py
βΒ Β βββ apps.py
βΒ Β βββ management
βΒ Β βΒ Β βββ commands
βΒ Β βΒ Β βββ initemojidata.py
βΒ Β βββ migrations
βΒ Β βΒ Β βββ 0001_add_emoji_model.py
βΒ Β βΒ Β βββ __init__.py
βΒ Β βββ models.py
βΒ Β βββ search_indexes.py
βΒ Β βββ tests.py
βΒ Β βββ views.py
βββ templates
βββ search
βββ indexes
βΒ Β βββ search
βΒ Β βββ emoji_text.txt
βββ search.html
Search templateΒΆ
Now itβs time to update search.html. This template contains a text field to type in a search query, a button that fires a search request and some template variables. Use the template example found here.
Note: Remove {% extends 'base.html' %}
at the top of the file.
The main differences in the template for this tutorial are the following two lines:
18 19 20 21 |
{% for result in page.object_list %}
<p>{{ result.object.code|safe }}</p>
<p>{{ result.object.name }}</p>
{% empty %}
|
object_list
is a list of search results. For each search result, display
the emoji and its name. result.object
provides direct access to the
Emoji
model and its database fields.
Displaying the emoji requires using the safe
Django filter. It does not
require further HTML escaping.
Running ElasticsearchΒΆ
Navigate to the location of your Elasticsearch installation and start an instance. For example, say you downloaded Elasticsearch in your Downloads folder:
cd Downloads
cd elasticsearch-5.5.3
cd bin
elasticsearch
Haystack ships with a set of Django commands that handle indexing the emoji data stored in the database. This tutorial uses the rebuild_index command. This command rebuilds the search index by first clearing it and then updating it. Have a look at the source code for more info.
From the root of the project, run the command:
python manage.py rebuild_index
Run the app:
python manage.py runserver
Navigate to http://127.0.0.1:8000/search and confirm that the app is working.
If you query for βcat,β you get back a list of results. If you query for βflag,β you get back results for flag emojis.
If you scroll to the bottom, youβll see a Previous button and Next button. Haystack returns at most 20 results per page. This out of the box feature is awesome. The layout needs a little bit of work though.
Bootstrap + clipboard.jsΒΆ
You can use Bootstrap to clean up the design. Another feature is to copy an emoji to your clipboard by clicking on it - clipboard.js can help here.
Load Bootstrap and clipboard.js from CDN in search.html:
1 2 3 4 5 6 7 8 9 |
<script src="https://cdn.jsdelivr.net/npm/clipboard@2/dist/clipboard.min.js"></script>
<!-- Bootstrap CSS -->
<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css"
integrity="sha384-MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO"
crossorigin="anonymous">
{% block content %}
|
A couple of Bootstrap <div>
elements and some styling updates go
a long way in improving the look of the app.
Including the data-clipboard-text
attribute on the emoji button lets
you copy emojis to your clipboard:
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
{% if query %}
<h3>Results</h3>
<div class="container">
<div class="row">
{% for result in page.object_list %}
<div class="col-sm">
<button type="button" class="btn" data-clipboard-text="{{ result.object.code|safe }}" style="font-size:90px;">{{ result.object.code|safe }}</button>
<p style="text-align: center">{{ result.object.name }}</p>
</div>
{% empty %}
<p>No results found.</p>
{% endfor %}
</div>
</div>
|
The last thing to do is to initialize clipboard.js in search.html:
50 51 52 53 54 55 56 57 58 59 60 61 62 |
{% endblock %}
<script>
var clipboard = new ClipboardJS('.btn');
clipboard.on('success', function(e) {
console.log(e);
});
clipboard.on('error', function(e) {
console.log(e);
});
</script>
|
Run the app with these new changes:
python manage.py runserver
Navigate to http://127.0.0.1:8000/search and confirm the changes. This looks much better. The emojis are more prominent and the click-to-copy feature is the π on top.
What youβve learnedΒΆ
Rejoice and show your friends how to find the emoji in the haystack. If youβre up for the challenge, see if you can make the following app improvements:
Load a subset of emojis on the homepage before a user searches
Add a navigation bar to filter by emoji category
Support for newer emojis